Plant peroxidases: substrate complexes with mechanistic implications.

نویسنده

  • M Gajhede
چکیده

Plant peroxidases are capable of binding phenolic substrates, and it has been possible to crystallize complexes between horseradish peroxidase C (HRP C) and benzhydroxamic acid. The X-ray structures of the binary HRP C:ferulic acid complex and the ternary HRP C:CN(-):ferulic acid complex to 2.0 and 1.45 A resolution, respectively, have also been solved recently. Ferulic acid is a naturally occurring phenolic compound found in the plant cell wall and it is an in vivo substrate for plant peroxidases. The X-ray structures demonstrate the flexibility of the aromatic-donor-binding site in plant peroxidases and highlight the role of the distal arginine in substrate oxidation and ligand binding. A general mechanism of peroxidase substrate oxidation (compound I-->compound II and compound II-->resting state) can be proposed on the basis of the complexes and a large body of biochemical evidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on plant peroxidases

Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with   oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...

متن کامل

The pH dependence of the activity of dehaloperoxidase from Amphitrite ornata.

Dehaloperoxidase (DHP) from the terebellid polychaete, Amphitrite ornata, is the first hemoglobin that has peroxidase activity as part of its native function. The substrate 2,4,6-tribromophenol (TBP) is oxidatively debrominated by DHP to form 2,6-dibromoquinone (DBQ) in a two-electron process. There is a well-defined internal binding site for TBP above the heme, a feature not observed in other ...

متن کامل

Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure.

Indole-3-acetic acid (IAA) can be oxidized via two mechanisms: a conventional hydrogen-peroxide-dependent pathway, and one that is hydrogen-peroxide-independent and requires oxygen. It has been shown here for the first time that only plant peroxidases are able to catalyse the reaction of IAA oxidation with molecular oxygen. Cytochrome c peroxidase (CcP), fungal peroxidases (manganese-dependent ...

متن کامل

A review of structural properties, metabolic function and measurement of peroxidase activity

The production of reactive oxygen species occurs during the natural metabolism of oxidative-breathing cells. Among reactive oxygen species, hydrogen peroxide is more dangerous to cell life due to its long half-life, but it is meanwhile an important regulatory molecule in redox signaling in living things. Peroxidases are one of the key antioxidant enzymes that are widely distributed in nature an...

متن کامل

The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis

Bacteria require a haem biosynthetic pathway for the assembly of a variety of protein complexes, including cytochromes, peroxidases, globins, and catalase. Haem is synthesised via a series of tetrapyrrole intermediates, including non-metallated porphyrins, such as protoporphyrin IX, which is well known to generate reactive oxygen species in the presence of light and oxygen. Staphylococcus aureu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 29 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001